GCPC 2024 Presentation of Solutions

The GCPC Jury June 22, 2024

GCPC 2024 Jury

Sebastian Angrick

Hasso-Plattner-Institute Potsdam

Niklas Bauer

Georg August University of Göttingen

Brutenis Gliwa

University of Rostock, CPUIm

- Andreas Grigorjew
 University of Helsinki FI
- Yvonne Kothmeier

Friedrich-Alexander University Erlangen-Nürnberg

Felicia Lucke

Fribourg University CH, CPUIm

Jannik Olbrich

Ulm University, CPUIm

- Erik Sünderhauf
 Technical University of Munich
- Christopher Weyand
 MOIA GmbH, CPUIm
- Paul Wild
 Friedrich-Alexander University
 Erlangen-Nürnberg, CPUIm
- Wendy Yi
 Karlsruhe Institute of Technology,CPUIm
- Michael Zündorf Karlsruhe Institute of Technology, CPUIm
- Marian Zuska University of Rostock

GCPC 2024 Test Solvers

Khaled Ismaeel

freiheit.com technologies GmbH, Hamburg

Michael Ruderer

Augsburg University, CPUIm

Jonas Schmidt

Hasso-Plattner-Institute Potsdam

Marcel Wienöbst

University of Lübeck, CPUIm

GCPC 2024 Technical Team

- Nathan Maier
 CPUIm
- Alexander Schmid
 CPUIm

Pascal Weber

University of Vienna, CPUIm

B: Bookshelf Bottleneck

Problem author: Jannik Olbrich

Problem

Store books of size $l \times w \times h$ into a shelf of height H while minimizing the shelf width used.

Problem

Store books of size $l \times w \times h$ into a shelf of height *H* while minimizing the shelf width used.

Solution

- Put the smallest side length in shelf direction and the second smallest upwards

Problem

Store books of size $l \times w \times h$ into a shelf of height *H* while minimizing the shelf width used.

- Put the smallest side length in shelf direction and the second smallest upwards
- If this does not fit with the height H, swap the dimensions

Problem

Store books of size $l \times w \times h$ into a shelf of height H while minimizing the shelf width used.

- Put the smallest side length in shelf direction and the second smallest upwards
- If this does not fit with the height *H*, swap the dimensions
- If it still does not fit, the task is impossible

Problem

Store books of size $l \times w \times h$ into a shelf of height H while minimizing the shelf width used.

- Put the smallest side length in shelf direction and the second smallest upwards
- If this does not fit with the height *H*, swap the dimensions
- If it still does not fit, the task is impossible
- Otherwise, do this for every book. The sum of the lengths is the solution

K: Kitten of Chaos

Problem author: Paul Wild

Problem

Apply a bunch of rotations and reflections to a string consisting of bdpq:

- h: horizontal flip: $bbq \leftrightarrow pdd$
- v: vertical flip: $bbq \leftrightarrow ppd$
- r: 180 degree rotation: bbq \leftrightarrow bqq

Problem

Apply a bunch of rotations and reflections to a string consisting of bdpq:

- h: horizontal flip: $bbq \leftrightarrow pdd$
- v: vertical flip: bbq \leftrightarrow ppd
- r: 180 degree rotation: bbq \leftrightarrow bqq

Solution

• Applying all the transformations one by one takes $\Theta(n^2)$ time, too slow!

Problem

Apply a bunch of rotations and reflections to a string consisting of bdpq:

- h: horizontal flip: $bbq \leftrightarrow pdd$
- v: vertical flip: bbq \leftrightarrow ppd
- r: 180 degree rotation: $bbq \leftrightarrow bqq$

- Applying all the transformations one by one takes $\Theta(n^2)$ time, too slow!
- Instead, we make some observations:
 - we may replace each r by hv
 - doing vh is the same as hv \rightsquigarrow move all h to the front
 - we only need to know if the number of h is even or odd (same for v)

Problem

Apply a bunch of rotations and reflections to a string consisting of bdpq:

- h: horizontal flip: $bbq \leftrightarrow pdd$
- v: vertical flip: bbq \leftrightarrow ppd
- r: 180 degree rotation: bbq \leftrightarrow bqq

- Applying all the transformations one by one takes $\Theta(n^2)$ time, too slow!
- Instead, we make some observations:
 - we may replace each r by hv
 - doing vh is the same as hv \rightsquigarrow move all h to the front
 - we only need to know if the number of h is even or odd (same for $\mathtt{v})$
- Using these, we only need to do at most one h and at most one v transformation.

Problem

Apply a bunch of rotations and reflections to a string consisting of bdpq:

- h: horizontal flip: $bbq \leftrightarrow pdd$
- v: vertical flip: $bbq \leftrightarrow ppd$
- r: 180 degree rotation: bbq \leftrightarrow bqq

- Applying all the transformations one by one takes $\Theta(n^2)$ time, too slow!
- Instead, we make some observations:
 - we may replace each r by hv
 - doing vh is the same as hv \rightsquigarrow move all h to the front
 - we only need to know if the number of h is even or odd (same for $\mathtt{v})$
- Using these, we only need to do at most one ${\tt h}$ and at most one ${\tt v}$ transformation.
- All of this can be done in O(n) time.

A: Alien Attack 2

Problem author: Yvonne Kothmeier & Andreas Grigorjew

Problem

- Find the size of the largest connected component in an undirected graph representing friendships.

Problem

- Find the size of the largest connected component in an undirected graph representing friendships.

- Perform a graph search starting from any unvisited node.
- Utilize algorithms like Depth First Search (DFS), Breadth First Search (BFS), or Union-Find with path compression to traverse the graph.

Problem

- Find the size of the largest connected component in an undirected graph representing friendships.

- Perform a graph search starting from any unvisited node.
- Utilize algorithms like Depth First Search (DFS), Breadth First Search (BFS), or Union-Find with path compression to traverse the graph.
- Count the number of nodes visited during each traversal to determine the size of the connected component.
- Repeat the process until all nodes have been visited.

Problem

- Find the size of the largest connected component in an undirected graph representing friendships.

- Perform a graph search starting from any unvisited node.
- Utilize algorithms like Depth First Search (DFS), Breadth First Search (BFS), or Union-Find with path compression to traverse the graph.
- Count the number of nodes visited during each traversal to determine the size of the connected component.
- Repeat the process until all nodes have been visited.
- The size of the largest component found will dictate the size of the smallest necessary ship.

Problem

- Find the size of the largest connected component in an undirected graph representing friendships.

- Perform a graph search starting from any unvisited node.
- Utilize algorithms like Depth First Search (DFS), Breadth First Search (BFS), or Union-Find with path compression to traverse the graph.
- Count the number of nodes visited during each traversal to determine the size of the connected component.
- Repeat the process until all nodes have been visited.
- The size of the largest component found will dictate the size of the smallest necessary ship.
- Pitfalls: Inefficient graph traversal algorithms, e.g. revisiting nodes or Union-Find without path compression, may lead to time limit problems.
- For Python users: default recursion depth is low. Increase using sys.setrecursionlimit

I: Interference

Problem author: Sebastian Angrick

Problem

• Given some alternating range updates, answer point queries

Problem

• Given some alternating range updates, answer point queries

Solution

• Range is too large to work with, ignore it

Problem

- Given some alternating range updates, answer point queries

- Range is too large to work with, ignore it
- $\mathcal{O}(n^2)$ is sufficient, for each query simulate all former updates.

Problem

- Given some alternating range updates, answer point queries

- Range is too large to work with, ignore it
- $\mathcal{O}(n^2)$ is sufficient, for each query simulate all former updates.
- Pitfalls: Results can be large (long long may be needed) or negative, correctly deal with alternation

M: Musical Mending

Problem author: Brutenis Gliwa, Marian Zuska

Problem

■ **Problem:** Find the minimal distance from the input sequence to any sequence *x*, *x* + 1, *x* + 2,..., *x* + *n* − 1.

Problem

■ **Problem:** Find the minimal distance from the input sequence to any sequence *x*, *x* + 1, *x* + 2,..., *x* + *n* − 1.

Solution

• For a fixed x, the distance can be determined in O(n).

Problem

■ **Problem:** Find the minimal distance from the input sequence to any sequence *x*, *x* + 1, *x* + 2,..., *x* + *n* − 1.

- For a fixed x, the distance can be determined in O(n).
- Naive solution: Compute the distance for all possible $x \in [-200\,000, 200\,000]$. $\mathcal{O}(v \cdot n)$ is too slow!

Problem

■ **Problem:** Find the minimal distance from the input sequence to any sequence *x*, *x* + 1, *x* + 2,..., *x* + *n* − 1.

- For a fixed x, the distance can be determined in O(n).
- Naive solution: Compute the distance for all possible $x \in [-200\,000, 200\,000]$. $\mathcal{O}(v \cdot n)$ is too slow!
- Binary searching x does not work, as the score is not a monotonic function.

Problem

■ **Problem:** Find the minimal distance from the input sequence to any sequence *x*, *x* + 1, *x* + 2,..., *x* + *n* − 1.

- For a fixed x, the distance can be determined in O(n).
- Naive solution: Compute the distance for all possible $x \in [-200\,000, 200\,000]$. $\mathcal{O}(v \cdot n)$ is too slow!
- Binary searching x does not work, as the score is not a monotonic function.
- Ternary search the answer over all possible x! $O(\log(v) \cdot n)$

C: Copycat Catcher

Problem author: Jannik Olbrich

Problem

 Determine whether pieces of code can be obtained by renaming variables from substrings of a reference
 for i in list do print i j k in list do print k a print b c

Problem

 Determine whether pieces of code can be obtained by renaming variables from substrings of a reference
 for i in list do print i j k in list do print k a

print b c

Solution

 Transform the code: Replace each occurrence of a variable V with
Problem

Determine whether pieces of code can be obtained by renaming variables from substrings of a reference
 for i in list do print i j
 k in list do print k a

```
print b c
```

- Transform the code: Replace each occurrence of a variable V with
 - the distance to the previous occurrence of V, or

Problem

 Determine whether pieces of code can be obtained by renaming variables from substrings of a reference
 for i in list do print i j k in list do print k a

```
print b c
```

- Transform the code: Replace each occurrence of a variable V with
 - the distance to the previous occurrence of V, or
 - 0 if there is no previous occurrence

Problem

 Determine whether pieces of code can be obtained by renaming variables from substrings of a reference
 for i in list do print i j k in list do print k a

```
print b c
```

- Transform the code: Replace each occurrence of a variable V with
 - the distance to the previous occurrence of V, or
 - 0 if there is no previous occurrence

Problem

 Determine whether pieces of code can be obtained by renaming variables from substrings of a reference
 for i in list do print i j k in list do print k a

```
print b c
```

- Transform the code: Replace each occurrence of a variable V with
 - the distance to the previous occurrence of V, or
 - 0 if there is no previous occurrence
- Do this for all suffixes of the reference:

```
for 0 in list do print 5 0
    0 in list do print 5 0
    in list do print 0 0
```

```
for 0 in list do print 5 0
0 in list do print 5 0
print 0 0
```

```
list do print 0 0 0 0
do print 0 0 0
print 0 0
```

Problem

 Determine whether pieces of code can be obtained by renaming variables from substrings of a reference
 for i in list do print i j k in list do print k a

```
st do print k a
print b c
```

- Transform the code: Replace each occurrence of a variable V with

 the distance to the previous occurrence of V, or
 0 if there is no previous occurrence

 Do this for all suffixes of the reference:

 for 0 in list do print 5 0
 0 in list do print 5 0
 1 ist do print 5 0
 1 ist do print 0 0
 0 in list do print 0 0
 0 in list do print 5 0
 1 ist do print 0 0
 0 print 0 0
- Sort these transformed suffixes lexicographically, use binary search to find the transformed query

Problem

 Determine whether pieces of code can be obtained by renaming variables from substrings of a reference
 for i in list do print i j k in list do print k a

```
print b c
```

- Transform the code: Replace each occurrence of a variable V with

 the distance to the previous occurrence of V, or
 0 if there is no previous occurrence

 Do this for all suffixes of the reference:

 for 0 in list do print 5 0
 list do print 0 0
 0 in list do print 5 0
 list do print 0 0
 print 0 0
- Sort these transformed suffixes lexicographically, use binary search to find the transformed query
- Time complexity: $O(n^2 + q \cdot q len \cdot \log n)$, where $q len \leq 2\,000$ is the max. length of a query

Problem

Find and interactively execute a winning strategy in the following game:

- There are some cards containing math operations +n and $\times n$.
- Two players alternate picking cards until no cards are left.
- These operations are applied to a given number in the order they are picked.
- One player wins if the final result is even, the other wins if it is odd.

Solution

• As we only care about parity, reduce all numbers mod 2.

- As we only care about parity, reduce all numbers mod 2.
- So there are only three types of cards: +0, +1, $\times 0$
 - Note that +0 is the same as $\times 1$.

Solution

- As we only care about parity, reduce all numbers mod 2.
- So there are only three types of cards: +0, +1, $\times 0$
 - Note that +0 is the same as $\times 1$.
- There are at most $n \leq 300$ cards, so we can use $\Theta(n^3)$ dynamic programming:

dp[who][cur][a][b][c] = Does player who win when the current value is cur and there are a, b and c operations of the respective types remaining?

Solution

- As we only care about parity, reduce all numbers mod 2.
- So there are only three types of cards: +0, +1, $\times 0$
 - Note that +0 is the same as $\times 1$.
- There are at most $n \leq 300$ cards, so we can use $\Theta(n^3)$ dynamic programming:

dp[who][cur][a][b][c] = Does player who win when the current value is cur and there are a, b and c operations of the respective types remaining?

• The game can be played by following along the values in the DP table.

Solution

- As we only care about parity, reduce all numbers mod 2.
- So there are only three types of cards: +0, +1, $\times 0$
 - Note that +0 is the same as $\times 1$.
- There are at most $n \leq 300$ cards, so we can use $\Theta(n^3)$ dynamic programming:

dp[who][cur][a][b][c] = Does player who win when the current value is cur and there are a, b and c operations of the respective types remaining?

• The game can be played by following along the values in the DP table.

Solution

- As we only care about parity, reduce all numbers mod 2.
- So there are only three types of cards: +0, +1, $\times 0$
 - Note that +0 is the same as $\times 1$.
- There are at most $n \leq 300$ cards, so we can use $\Theta(n^3)$ dynamic programming:

dp[who][cur][a][b][c] = Does player who win when the current value is cur and there are a, b and c operations of the respective types remaining?

• The game can be played by following along the values in the DP table.

Challenge

```
Can you also solve the problem for n \le 10^5?
```

Problem author: Paul Wild

Problem

Construct a valid *Pentominous* grid of a given size:

- Divide an $h \times w$ grid into regions of size 5 (pentominoes)...
- ... such that no two adjacent regions have the same shape.

Problem author: Paul Wild

Insights and corner cases

• One of *h* or *w* must be a multiple of 5; by symmetry, assume it's *w*.

Problem author: Paul Wild

Insights and corner cases

- One of *h* or *w* must be a multiple of 5; by symmetry, assume it's *w*.
- $1 \times w$ is only solvable for w = 5:

Problem author: Paul Wild

Insights and corner cases

- One of *h* or *w* must be a multiple of 5; by symmetry, assume it's *w*.
- $1 \times w$ is only solvable for w = 5:

• 2×5 is not solvable:

Problem author: Paul Wild

Insights and corner cases

- One of *h* or *w* must be a multiple of 5; by symmetry, assume it's *w*.
- $1 \times w$ is only solvable for w = 5:

• 2×5 is not solvable:

• $2 \times w$ is solvable in all other cases:

Problem author: Paul Wild

Insights and corner cases

- One of h or w must be a multiple of 5; by symmetry, assume it's w.
- $1 \times w$ is only solvable for w = 5:

• 2×5 is not solvable:

• $2 \times w$ is solvable in all other cases:

Problem author: Paul Wild

Insights and corner cases

- One of h or w must be a multiple of 5; by symmetry, assume it's w.
- $1 \times w$ is only solvable for w = 5:

• 2 × 5 is not solvable:

• $2 \times w$ is solvable in all other cases:

Problem author: Paul Wild

Solution

• For 3×5 we can come up with a solution that can be repeated to achieve any width:

Problem author: Paul Wild

Solution

• For 3×5 we can come up with a solution that can be repeated to achieve any width:

Problem author: Paul Wild

Solution

• For 3×5 we can come up with a solution that can be repeated to achieve any width:

Problem author: Paul Wild

Solution

• For 3×5 we can come up with a solution that can be repeated to achieve any width:

• Similar repeatable patterns exist for heights 4, 5, 6 and 7:

Problem author: Paul Wild

Solution (continued)

Problem author: Paul Wild

Solution (continued)

Problem author: Paul Wild

Solution (continued)

Problem author: Paul Wild

Solution (continued)

Problem author: Paul Wild

Solution (continued)

Problem author: Paul Wild

Solution (continued)

• With some care, these patterns can be chosen so that they tile along both directions:

• This way, we can reduce any height *h* to one of the base cases 3, 4, 5, 6 or 7.

Problem author: Michael Zündorf

Problem

Process the following queries:

- + b x: place a lamp with brightness b at position x.
- b x: remove a lamp with brightness b at position x.
 - ? x: calculate the brightness at position x.

Note that the light reduces by a factor of $\tilde{p} = 1 - p$ every metre.

Problem

Process the following queries:

- + b x: place a lamp with brightness b at position x.
- b x: remove a lamp with brightness b at position x.
 - ? x: calculate the brightness at position x.

Note that the light reduces by a factor of $\tilde{p} = 1 - p$ every metre.

- Split light into two directions and store it in two data structures.
 - \Longrightarrow only consider light to the right for now

- Split light into two directions and store it in two data structures.

 ⇒ only consider light to the right for now
- A light with brightness b at position x contributes b ⋅ p̃^{y-x} at y ≥ x.

- Split light into two directions and store it in two data structures.

 ⇒ only consider light to the right for now
- A light with brightness b at position x contributes b ⋅ p̃^{y-x} at y ≥ x.
- A light with brightness $b \cdot \tilde{p}^{\times}$ at position 0 has the same contribution at y.

- Split light into two directions and store it in two data structures.

 ⇒ only consider light to the right for now
- A light with brightness b at position x contributes $b \cdot \tilde{p}^{y-x}$ at $y \ge x$.
- A light with brightness $b \cdot \tilde{p}^{\times}$ at position 0 has the same contribution at y.
- Do not propagate light.
- Place bulbs at positions x, x + 1, ..., n with constant brightness b · p̃^x.

- Split light into two directions and store it in two data structures.
 ⇒ only consider light to the right for now
- A light with brightness b at position x contributes $b \cdot \tilde{p}^{y-x}$ at $y \ge x$.
- A light with brightness $b \cdot \tilde{p}^{\times}$ at position 0 has the same contribution at y.
- Do not propagate light.
- Place bulbs at positions x, x + 1, ..., n with constant brightness b · p̃^x.
- The light at position y is now too bright by a constant factor p^y .
- For queries of type ? x, answer with $\ell_x \cdot \tilde{p}^{-x}$.

- Split light into two directions and store it in two data structures.
 ⇒ only consider light to the right for now
- A light with brightness b at position x contributes $b \cdot \tilde{p}^{y-x}$ at $y \ge x$.
- A light with brightness $b \cdot \tilde{p}^x$ at position 0 has the same contribution at y.
- Do not propagate light.
- Place bulbs at positions x, x + 1, ..., n with constant brightness b · p̃^x.
- The light at position y is now too bright by a constant factor p^y .
- For queries of type ? x, answer with $\ell_x \cdot \tilde{p}^{-x}$.
- Use segment tree or fenwick tree to maintain ℓ in $\mathcal{O}(q \log(n))$.

Problem author: Wendy Yi

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

Insights

 Items with no choice and items with all choices are easy.

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

- Items with no choice and items with all choices are easy.
- If we assign all items of one set with two choices, an optimal solution for the rest can be determined greedily.

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

- Items with no choice and items with all choices are easy.
- If we assign all items of one set with two choices, an optimal solution for the rest can be determined greedily.

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

- Items with no choice and items with all choices are easy.
- If we assign all items of one set with two choices, an optimal solution for the rest can be determined greedily.
- There is an optimal solution where there is one set of items with two choices that is assigned to the same programme.

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

- Items with no choice and items with all choices are easy.
- If we assign all items of one set with two choices, an optimal solution for the rest can be determined greedily.
- There is an optimal solution where there is one set of items with two choices that is assigned to the same programme.

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

Solution

• Process items that can only be washed with one programme first.

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

- Process items that can only be washed with one programme first.
- For each set with two choices:

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

- Process items that can only be washed with one programme first.
- For each set with two choices:
 - Try to assign the whole set to one of the two choices.

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

- Process items that can only be washed with one programme first.
- For each set with two choices:
 - Try to assign the whole set to one of the two choices.
 - Determine the optimal solution for the other sets with two choices.

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

- Process items that can only be washed with one programme first.
- For each set with two choices:
 - Try to assign the whole set to one of the two choices.
 - Determine the optimal solution for the other sets with two choices.
 - Distribute the items with three choices optimally.

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

- Process items that can only be washed with one programme first.
- For each set with two choices:
 - Try to assign the whole set to one of the two choices.
 - Determine the optimal solution for the other sets with two choices.
 - Distribute the items with three choices optimally.
- Take the minimum over all such assignments (6 in total).

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

- Process items that can only be washed with one programme first.
- For each set with two choices:
 - Try to assign the whole set to one of the two choices.
 - Determine the optimal solution for the other sets with two choices.
 - Distribute the items with three choices optimally.
- Take the minimum over all such assignments (6 in total).

Given the capacity $1 \le k \le 10^9$ of a washing machine with three programmes, and how many items can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

Solution

- Process items that can only be washed with one programme first.
- For each set with two choices:
 - Try to assign the whole set to one of the two choices.
 - Determine the optimal solution for the other sets with two choices.
 - Distribute the items with three choices optimally.
- Take the minimum over all such assignments (6 in total).

Running time: $\mathcal{O}(1)$ per test case

Problem

• Given $n < 10^5$ university names, $m < 10^5$ rivalries between universities, and $k < 10^5$ texts. For each text, answer if there are two rivalling universities with different number of occurrences. The summed length of all names and texts is $W < 10^6$.

Problem

• Given $n < 10^5$ university names, $m < 10^5$ rivalries between universities, and $k < 10^5$ texts. For each text, answer if there are two rivalling universities with different number of occurrences. The summed length of all names and texts is $W < 10^6$.

Solution

Problem

• Given $n < 10^5$ university names, $m < 10^5$ rivalries between universities, and $k < 10^5$ texts. For each text, answer if there are two rivalling universities with different number of occurrences. The summed length of all names and texts is $W < 10^6$.

Solution

First a solution in time $\mathcal{O}(mW)$.

build Aho-Corasick automaton out of all the names

Problem

• Given $n < 10^5$ university names, $m < 10^5$ rivalries between universities, and $k < 10^5$ texts. For each text, answer if there are two rivalling universities with different number of occurrences. The summed length of all names and texts is $W < 10^6$.

Solution

- build Aho-Corasick automaton out of all the names
- each state stores *m* long vector that tracks for each rivalry the difference in occurrence, initially 0

Problem

• Given $n < 10^5$ university names, $m < 10^5$ rivalries between universities, and $k < 10^5$ texts. For each text, answer if there are two rivalling universities with different number of occurrences. The summed length of all names and texts is $W < 10^6$.

Solution

- build Aho-Corasick automaton out of all the names
- each state stores *m* long vector that tracks for each rivalry the difference in occurrence, initially 0
- for rivalry i between u and v, add +1 to the ith entry of the vector of states that accept u and -1
 in states that accept v

Problem

• Given $n < 10^5$ university names, $m < 10^5$ rivalries between universities, and $k < 10^5$ texts. For each text, answer if there are two rivalling universities with different number of occurrences. The summed length of all names and texts is $W < 10^6$.

Solution

- build Aho-Corasick automaton out of all the names
- each state stores *m* long vector that tracks for each rivalry the difference in occurrence, initially 0
- for rivalry i between u and v, add +1 to the ith entry of the vector of states that accept u and -1
 in states that accept v
- to process an article, feed the text into the automaton and add the m long vectors up element wise

Problem

• Given $n < 10^5$ university names, $m < 10^5$ rivalries between universities, and $k < 10^5$ texts. For each text, answer if there are two rivalling universities with different number of occurrences. The summed length of all names and texts is $W < 10^6$.

Solution

- build Aho-Corasick automaton out of all the names
- each state stores *m* long vector that tracks for each rivalry the difference in occurrence, initially 0
- for rivalry i between u and v, add +1 to the ith entry of the vector of states that accept u and -1
 in states that accept v
- to process an article, feed the text into the automaton and add the m long vectors up element wise
- a text is safe if we get a vector with all 0s

Problem

• Given $n < 10^5$ university names, $m < 10^5$ rivalries between universities, and $k < 10^5$ texts. For each text, answer if there are two rivalling universities with different number of occurrences. The summed length of all names and texts is $W < 10^6$.

Solution

First a solution in time $\mathcal{O}(mW)$.

- build Aho-Corasick automaton out of all the names
- each state stores *m* long vector that tracks for each rivalry the difference in occurrence, initially 0
- for rivalry i between u and v, add +1 to the ith entry of the vector of states that accept u and -1
 in states that accept v
- to process an article, feed the text into the automaton and add the *m* long vectors up element wise
- a text is safe if we get a vector with all 0s

To avoid quadratic time, hash the vectors. **Runtime**: O(n + m + k)

Problem author: Erik Sünderhauf

Given n ≤ 4096 pairs of numbers (x_i, y_i), with 1 ≤ x_i ≤ 4096 =: C and |y_i| ≤ C. Find two distinct subsets with the same sum or report that this is not possible.

Given n ≤ 4096 pairs of numbers (x_i, y_i), with 1 ≤ x_i ≤ 4096 =: C and |y_i| ≤ C. Find two distinct subsets with the same sum or report that this is not possible.

Solution

• The coordinates are too large to run a dp solution, so we should look for a brute force approach.

Given n ≤ 4096 pairs of numbers (x_i, y_i), with 1 ≤ x_i ≤ 4096 =: C and |y_i| ≤ C. Find two distinct subsets with the same sum or report that this is not possible.

- The coordinates are too large to run a dp solution, so we should look for a brute force approach.
- We could solve this in O(3ⁿ) by deciding for each element whether it should go in the 1st subset, the 2nd subset, or none of the subsets.

Given n ≤ 4096 pairs of numbers (x_i, y_i), with 1 ≤ x_i ≤ 4096 =: C and |y_i| ≤ C. Find two distinct subsets with the same sum or report that this is not possible.

Solution

- The coordinates are too large to run a dp solution, so we should look for a brute force approach.
- We could solve this in O(3ⁿ) by deciding for each element whether it should go in the 1st subset, the 2nd subset, or none of the subsets.
- Optimize with meet-in-the-middle to $\mathcal{O}(3^{n/2})$ by computing all possible sums of the form

$$\sum_{i=1}^{n/2} s_i \cdot (x_i, y_i), \sum_{i=n/2+1}^n s_i \cdot (x_i, y_i), \quad s_i \in \{-1, 0, 1\}$$

and finding a collision.

Given n ≤ 4096 pairs of numbers (x_i, y_i), with 1 ≤ x_i ≤ 4096 =: C and |y_i| ≤ C. Find two distinct subsets with the same sum or report that this is not possible.

Solution

- The coordinates are too large to run a dp solution, so we should look for a brute force approach.
- We could solve this in O(3ⁿ) by deciding for each element whether it should go in the 1st subset, the 2nd subset, or none of the subsets.
- Optimize with meet-in-the-middle to $\mathcal{O}(3^{n/2})$ by computing all possible sums of the form

$$\sum_{i=1}^{n/2} s_i \cdot (x_i, y_i), \sum_{i=n/2+1}^n s_i \cdot (x_i, y_i), \quad s_i \in \{-1, 0, 1\}$$

and finding a collision.

• But *n* is waaay too large for this approach...
• We can have up to 2^n possible subset sums, which is exponential in n.

- We can have up to 2^n possible subset sums, which is exponential in n.
- However, the absolute value of the coordinates in any subset sum are always $\leq n \cdot C$, which is polynomial in n!

- We can have up to 2^n possible subset sums, which is exponential in n.
- However, the absolute value of the coordinates in any subset sum are always $\leq n \cdot C$, which is polynomial in n!

Solution

If n is large enough we can always find two distinct subsets with the same sum. Just do n = min(n, N) at the beginning of your code. (N ~ 28 - 32)

- We can have up to 2^n possible subset sums, which is exponential in n.
- However, the absolute value of the coordinates in any subset sum are always $\leq n \cdot C$, which is polynomial in n!

- If n is large enough we can always find two distinct subsets with the same sum. Just do n = min(n, N) at the beginning of your code. (N ~ 28 32)
- One can prove that for $n \ge 32$ there always is a collision (short sketch on next slide).

- We can have up to 2^n possible subset sums, which is exponential in n.
- However, the absolute value of the coordinates in any subset sum are always $\leq n \cdot C$, which is polynomial in n!

- If n is large enough we can always find two distinct subsets with the same sum. Just do n = min(n, N) at the beginning of your code. (N ~ 28 32)
- One can prove that for $n \ge 32$ there always is a collision (short sketch on next slide).
- Challenge: Construct test cases without collision and with a large *n*. The best case we could achieve has *n* = 27. Hint: powers of 2 are not useful.

Proof sketch

Let (X, Y) be the total sum of all pairs. Pick a random subset with sum (\tilde{x}, \tilde{y}) . Using Chebyshev's inequality you can show that the probability that we are "close"' to the total sum

$$\left| (\tilde{x}, \tilde{y}) - \frac{1}{2}(X, Y) \right| \lesssim \sqrt{n}C$$

happens with probability $\geq 1/2$. Note that there are $\mathcal{O}(nC^2)$ possible sums that are "close". If all subset sums that are "close" to the total sum are distinct, then this requires

$$nC^2 \cdot 2^{-n} \gtrsim \frac{1}{2} \Rightarrow C \gtrsim \frac{2^{n/2}}{\sqrt{n}}.$$

Inserting numbers and more details¹ shows that we always have a collision for $n \ge 32$.

¹search for "Probabilistic method"

Problem author: Jannik Olbrich

Problem author: Jannik Olbrich

Problem

Given a point symmetric polygon, check if it can be cut into exactly two pieces of equal size along an infinite line.

Problem author: Jannik Olbrich

Solution

- Polygon is point symmetric
- Parts must have equal size

 \implies Line has to go through centre of mass = point of symmetry

Problem author: Jannik Olbrich

- Polygon is point symmetric
- Parts must have equal size
 - \implies Line has to go through centre of mass = point of symmetry
 - \implies We can do a sweepline around centre of mass

Problem author: Jannik Olbrich

- Polygon is point symmetric
- Parts must have equal size
 - \implies Line has to go through centre of mass = point of symmetry
 - \implies We can do a sweepline around centre of mass
- Due to symmetry, it is sufficient to keep track of the upper half of the polygon

Problem author: Jannik Olbrich

- Polygon is point symmetric
- Parts must have equal size
 - \implies Line has to go through centre of mass = point of symmetry
 - \implies We can do a sweepline around centre of mass
- Due to symmetry, it is sufficient to keep track of the upper half of the polygon
- Sweepline is valid answer \Longleftrightarrow sweepline intersects the polygon exactly once

Problem author: Jannik Olbrich

Sweepline

• Number of intersections can only change at corners

Problem author: Jannik Olbrich

Sweepline

- Number of intersections can only change at corners
- + events come before events

Problem author: Jannik Olbrich

Sweepline

- Number of intersections can only change at corners
- + events come before events
- If after a type *a* event the sweepline has size 1, the line is ok
- Type c events are only ok if we can rotate an ε further (add a dummy event halfway to the next actual event)

Problem author: Jannik Olbrich

Edgecase

There might be no valid cut line that goes through any corner

Problem author: Jannik Olbrich

Edgecase

There might be no valid cut line that goes through any corner

Problem author: Jannik Olbrich

Edgecase

There might be no valid cut line that goes through any corner

Language stats

Jury work

• 583 secret test cases (\approx 45 per problem)

Jury work

- 583 secret test cases (pprox 45 per problem)
- 149 jury solutions

Jury work

- 583 secret test cases (\approx 45 per problem)
- 149 jury solutions
- The minimum number of lines the jury needed to solve all problems is

8 + 3 + 21 + 43 + 32 + 53 + 23 + 46 + 16 + 38 + 6 + 18 + 6 = 313

On average 24.1 lines per problem

Jury work

- 583 secret test cases (\approx 45 per problem)
- 149 jury solutions
- The minimum number of lines the jury needed to solve all problems is

8 + 3 + 21 + 43 + 32 + 53 + 23 + 46 + 16 + 38 + 6 + 18 + 6 = 313

On average 24.1 lines per problem

- The minimum number of characters the jury needed to solve all problems is

231 + 196 + 495 + 828 + 674 + 1109 + 818 + 1407 + 393 + 952 + 254 + 615 + 231

On average 631 characters per problem